\(\int \frac {\cos ^3(c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\) [199]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 266 \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {(47 A+24 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 a^{3/2} d}+\frac {(17 A+9 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {3 (7 A+4 C) \sin (c+d x)}{8 a d \sqrt {a+a \sec (c+d x)}}-\frac {(13 A+6 C) \cos (c+d x) \sin (c+d x)}{12 a d \sqrt {a+a \sec (c+d x)}}+\frac {(5 A+3 C) \cos ^2(c+d x) \sin (c+d x)}{6 a d \sqrt {a+a \sec (c+d x)}} \]

[Out]

-1/8*(47*A+24*C)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-1/2*(A+C)*cos(d*x+c)^2*sin(d*x+c)
/d/(a+a*sec(d*x+c))^(3/2)+1/4*(17*A+9*C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)
/d*2^(1/2)+3/8*(7*A+4*C)*sin(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)-1/12*(13*A+6*C)*cos(d*x+c)*sin(d*x+c)/a/d/(a+a*
sec(d*x+c))^(1/2)+1/6*(5*A+3*C)*cos(d*x+c)^2*sin(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {4170, 4107, 4005, 3859, 209, 3880} \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {(47 A+24 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{8 a^{3/2} d}+\frac {(17 A+9 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {3 (7 A+4 C) \sin (c+d x)}{8 a d \sqrt {a \sec (c+d x)+a}}+\frac {(5 A+3 C) \sin (c+d x) \cos ^2(c+d x)}{6 a d \sqrt {a \sec (c+d x)+a}}-\frac {(A+C) \sin (c+d x) \cos ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}-\frac {(13 A+6 C) \sin (c+d x) \cos (c+d x)}{12 a d \sqrt {a \sec (c+d x)+a}} \]

[In]

Int[(Cos[c + d*x]^3*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

-1/8*((47*A + 24*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) + ((17*A + 9*C)*ArcTa
n[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)*Cos[c + d*x]^2*
Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)) + (3*(7*A + 4*C)*Sin[c + d*x])/(8*a*d*Sqrt[a + a*Sec[c + d*x]])
 - ((13*A + 6*C)*Cos[c + d*x]*Sin[c + d*x])/(12*a*d*Sqrt[a + a*Sec[c + d*x]]) + ((5*A + 3*C)*Cos[c + d*x]^2*Si
n[c + d*x])/(6*a*d*Sqrt[a + a*Sec[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4107

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rule 4170

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-a)*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*
(2*m + 1))), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b
*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x
] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A+C) \cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {\int \frac {\cos ^3(c+d x) \left (-a (5 A+3 C)+\frac {1}{2} a (7 A+3 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2} \\ & = -\frac {(A+C) \cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(5 A+3 C) \cos ^2(c+d x) \sin (c+d x)}{6 a d \sqrt {a+a \sec (c+d x)}}-\frac {\int \frac {\cos ^2(c+d x) \left (a^2 (13 A+6 C)-\frac {5}{2} a^2 (5 A+3 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{6 a^3} \\ & = -\frac {(A+C) \cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(13 A+6 C) \cos (c+d x) \sin (c+d x)}{12 a d \sqrt {a+a \sec (c+d x)}}+\frac {(5 A+3 C) \cos ^2(c+d x) \sin (c+d x)}{6 a d \sqrt {a+a \sec (c+d x)}}-\frac {\int \frac {\cos (c+d x) \left (-\frac {9}{2} a^3 (7 A+4 C)+\frac {3}{2} a^3 (13 A+6 C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{12 a^4} \\ & = -\frac {(A+C) \cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {3 (7 A+4 C) \sin (c+d x)}{8 a d \sqrt {a+a \sec (c+d x)}}-\frac {(13 A+6 C) \cos (c+d x) \sin (c+d x)}{12 a d \sqrt {a+a \sec (c+d x)}}+\frac {(5 A+3 C) \cos ^2(c+d x) \sin (c+d x)}{6 a d \sqrt {a+a \sec (c+d x)}}-\frac {\int \frac {\frac {3}{4} a^4 (47 A+24 C)-\frac {9}{4} a^4 (7 A+4 C) \sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{12 a^5} \\ & = -\frac {(A+C) \cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {3 (7 A+4 C) \sin (c+d x)}{8 a d \sqrt {a+a \sec (c+d x)}}-\frac {(13 A+6 C) \cos (c+d x) \sin (c+d x)}{12 a d \sqrt {a+a \sec (c+d x)}}+\frac {(5 A+3 C) \cos ^2(c+d x) \sin (c+d x)}{6 a d \sqrt {a+a \sec (c+d x)}}+\frac {(17 A+9 C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}-\frac {(47 A+24 C) \int \sqrt {a+a \sec (c+d x)} \, dx}{16 a^2} \\ & = -\frac {(A+C) \cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {3 (7 A+4 C) \sin (c+d x)}{8 a d \sqrt {a+a \sec (c+d x)}}-\frac {(13 A+6 C) \cos (c+d x) \sin (c+d x)}{12 a d \sqrt {a+a \sec (c+d x)}}+\frac {(5 A+3 C) \cos ^2(c+d x) \sin (c+d x)}{6 a d \sqrt {a+a \sec (c+d x)}}-\frac {(17 A+9 C) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}+\frac {(47 A+24 C) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 a d} \\ & = -\frac {(47 A+24 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 a^{3/2} d}+\frac {(17 A+9 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {3 (7 A+4 C) \sin (c+d x)}{8 a d \sqrt {a+a \sec (c+d x)}}-\frac {(13 A+6 C) \cos (c+d x) \sin (c+d x)}{12 a d \sqrt {a+a \sec (c+d x)}}+\frac {(5 A+3 C) \cos ^2(c+d x) \sin (c+d x)}{6 a d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 2.89 (sec) , antiderivative size = 427, normalized size of antiderivative = 1.61 \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sec (c+d x) \left (408 \sqrt {2} A \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \sin (c+d x)+216 \sqrt {2} C \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \sin (c+d x)+357 A \sqrt {1-\sec (c+d x)} \sin (c+d x)+144 C \sqrt {1-\sec (c+d x)} \sin (c+d x)+102 A \cos ^2(c+d x) \sqrt {1-\sec (c+d x)} \sin (c+d x)+88 A \cos ^3(c+d x) \sqrt {1-\sec (c+d x)} \sin (c+d x)+\frac {323}{2} A \sqrt {1-\sec (c+d x)} \sin (2 (c+d x))+48 C \sqrt {1-\sec (c+d x)} \sin (2 (c+d x))+408 \sqrt {2} A \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \tan (c+d x)+216 \sqrt {2} C \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \tan (c+d x)-9 (51 A+32 C) \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right ) (\sin (c+d x)+\tan (c+d x))-336 A \operatorname {Hypergeometric2F1}\left (\frac {1}{2},4,\frac {3}{2},1-\sec (c+d x)\right ) \sqrt {1-\sec (c+d x)} (\sin (c+d x)+\tan (c+d x))\right )}{96 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \]

[In]

Integrate[(Cos[c + d*x]^3*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(Sec[c + d*x]*(408*Sqrt[2]*A*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Sin[c + d*x] + 216*Sqrt[2]*C*ArcTanh[Sqrt
[1 - Sec[c + d*x]]/Sqrt[2]]*Sin[c + d*x] + 357*A*Sqrt[1 - Sec[c + d*x]]*Sin[c + d*x] + 144*C*Sqrt[1 - Sec[c +
d*x]]*Sin[c + d*x] + 102*A*Cos[c + d*x]^2*Sqrt[1 - Sec[c + d*x]]*Sin[c + d*x] + 88*A*Cos[c + d*x]^3*Sqrt[1 - S
ec[c + d*x]]*Sin[c + d*x] + (323*A*Sqrt[1 - Sec[c + d*x]]*Sin[2*(c + d*x)])/2 + 48*C*Sqrt[1 - Sec[c + d*x]]*Si
n[2*(c + d*x)] + 408*Sqrt[2]*A*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Tan[c + d*x] + 216*Sqrt[2]*C*ArcTanh[Sq
rt[1 - Sec[c + d*x]]/Sqrt[2]]*Tan[c + d*x] - 9*(51*A + 32*C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]]*(Sin[c + d*x] + T
an[c + d*x]) - 336*A*Hypergeometric2F1[1/2, 4, 3/2, 1 - Sec[c + d*x]]*Sqrt[1 - Sec[c + d*x]]*(Sin[c + d*x] + T
an[c + d*x])))/(96*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1007\) vs. \(2(231)=462\).

Time = 0.85 (sec) , antiderivative size = 1008, normalized size of antiderivative = 3.79

method result size
default \(\text {Expression too large to display}\) \(1008\)

[In]

int(cos(d*x+c)^3*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/24/a^2/d*(102*A*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln((cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+
c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c))*cos(d*x+c)^2+8*A*cos(d*x+c)^4*sin(d*x+c)+54*C*2^(1/2)*(-cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*ln((cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c))*cos(d*x+
c)^2+204*A*2^(1/2)*ln((cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c))*(-cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)-141*A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+
c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2-6*A*cos(d*x+c)^3*sin(d*x+c)+108*C*2^(1/2)*ln((cot(d*x+c
)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*co
s(d*x+c)-72*C*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1)
)^(1/2))*cos(d*x+c)^2+102*A*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln((cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c
)+csc(d*x+c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c))-282*A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(co
s(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+37*A*cos(d*x+c)^2*sin(d*x+c)+54*C*2^(1/2)*(-cos(d*x
+c)/(cos(d*x+c)+1))^(1/2)*ln((cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2)-cot(d*x+c)+csc(d*x+c)
)-144*C*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2
))*cos(d*x+c)+24*C*cos(d*x+c)^2*sin(d*x+c)-141*A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*
x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+63*A*cos(d*x+c)*sin(d*x+c)-72*C*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)
*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+36*C*cos(d*x+c)*sin(d*x+c))*(a*(1+sec(d
*x+c)))^(1/2)/(cos(d*x+c)+1)^2

Fricas [A] (verification not implemented)

none

Time = 3.28 (sec) , antiderivative size = 668, normalized size of antiderivative = 2.51 \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [-\frac {6 \, \sqrt {2} {\left ({\left (17 \, A + 9 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (17 \, A + 9 \, C\right )} \cos \left (d x + c\right ) + 17 \, A + 9 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 3 \, {\left ({\left (47 \, A + 24 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (47 \, A + 24 \, C\right )} \cos \left (d x + c\right ) + 47 \, A + 24 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) - 2 \, {\left (8 \, A \cos \left (d x + c\right )^{4} - 6 \, A \cos \left (d x + c\right )^{3} + {\left (37 \, A + 24 \, C\right )} \cos \left (d x + c\right )^{2} + 9 \, {\left (7 \, A + 4 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{48 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {6 \, \sqrt {2} {\left ({\left (17 \, A + 9 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (17 \, A + 9 \, C\right )} \cos \left (d x + c\right ) + 17 \, A + 9 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 3 \, {\left ({\left (47 \, A + 24 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (47 \, A + 24 \, C\right )} \cos \left (d x + c\right ) + 47 \, A + 24 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (8 \, A \cos \left (d x + c\right )^{4} - 6 \, A \cos \left (d x + c\right )^{3} + {\left (37 \, A + 24 \, C\right )} \cos \left (d x + c\right )^{2} + 9 \, {\left (7 \, A + 4 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{24 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

[In]

integrate(cos(d*x+c)^3*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/48*(6*sqrt(2)*((17*A + 9*C)*cos(d*x + c)^2 + 2*(17*A + 9*C)*cos(d*x + c) + 17*A + 9*C)*sqrt(-a)*log((2*sqr
t(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos
(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 3*((47*A + 24*C)*cos(d*x + c)^2 + 2*(47*A + 24*C)*cos(
d*x + c) + 47*A + 24*C)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*
cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) - 2*(8*A*cos(d*x + c)^4 - 6*A*cos(d*x + c)
^3 + (37*A + 24*C)*cos(d*x + c)^2 + 9*(7*A + 4*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*
x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/24*(6*sqrt(2)*((17*A + 9*C)*cos(d*x + c)^2 +
 2*(17*A + 9*C)*cos(d*x + c) + 17*A + 9*C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(
d*x + c)/(sqrt(a)*sin(d*x + c))) - 3*((47*A + 24*C)*cos(d*x + c)^2 + 2*(47*A + 24*C)*cos(d*x + c) + 47*A + 24*
C)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (8*A*cos(d*x
+ c)^4 - 6*A*cos(d*x + c)^3 + (37*A + 24*C)*cos(d*x + c)^2 + 9*(7*A + 4*C)*cos(d*x + c))*sqrt((a*cos(d*x + c)
+ a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

Sympy [F]

\[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \cos ^{3}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cos(d*x+c)**3*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*cos(c + d*x)**3/(a*(sec(c + d*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{3}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^3*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^3/(a*sec(d*x + c) + a)^(3/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 815 vs. \(2 (231) = 462\).

Time = 2.31 (sec) , antiderivative size = 815, normalized size of antiderivative = 3.06 \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)^3*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/48*(6*sqrt(2)*(17*A + 9*C)*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/(sq
rt(-a)*a*sgn(cos(d*x + c))) - 3*(47*A + 24*C)*log(abs(-1947111321950560360698936123457536*(sqrt(-a)*tan(1/2*d*
x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 3894222643901120721397872246915072*sqrt(2)*abs(a) + 5841
333965851681082096808370372608*a)/abs(-1947111321950560360698936123457536*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqr
t(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 3894222643901120721397872246915072*sqrt(2)*abs(a) + 58413339658516810820
96808370372608*a))/(sqrt(-a)*abs(a)*sgn(cos(d*x + c))) - 12*(sqrt(2)*A*a*sgn(cos(d*x + c)) + sqrt(2)*C*a*sgn(c
os(d*x + c)))*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*tan(1/2*d*x + 1/2*c)/a^3 - 4*sqrt(2)*(339*(sqrt(-a)*tan(1/2*
d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*A + 72*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2
*d*x + 1/2*c)^2 + a))^10*C - 3165*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^8*A*a
- 888*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^8*C*a + 9198*(sqrt(-a)*tan(1/2*d*x
 + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*A*a^2 + 3024*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1
/2*d*x + 1/2*c)^2 + a))^6*C*a^2 - 4938*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4
*A*a^3 - 1776*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*C*a^3 + 975*(sqrt(-a)*ta
n(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A*a^4 + 360*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(
-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*C*a^4 - 73*A*a^5 - 24*C*a^5)/(((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(
1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2
)^3*sqrt(-a)*sgn(cos(d*x + c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^3\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((cos(c + d*x)^3*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int((cos(c + d*x)^3*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(3/2), x)